66 research outputs found

    On-chip III-V monolithic integration of heralded single photon sources and beamsplitters

    Full text link
    We demonstrate a monolithic III-V photonic circuit combining a heralded single photon source with a beamsplitter, at room temperature and telecom wavelength. Pulsed parametric down-conversion in an AlGaAs waveguide generates counterpropagating photons, one of which is used to herald the injection of its twin into the beamsplitter. We use this configuration to implement an integrated Hanbury-Brown and Twiss experiment, yielding a heralded second-order correlation gher(2)(0)=0.10±0.02g^{(2)}_{\rm her}(0)=0.10 \pm 0.02 that confirms single-photon operation. The demonstrated generation and manipulation of quantum states on a single III-V semiconductor chip opens promising avenues towards real-world applications in quantum information

    Anisotropic spin-orbit induced splitting of intersubband spin plasmons

    Get PDF
    The anisotropic splitting of intersubband spin plasmons, resulting from spin-orbit coupling, is studied by angle-resolved inelastic light scattering on a [001]-oriented GaAs/AlGaAs quantum well. Confirming theoretical predictions made in [C. A. Ullrich and M. A. Flatte, Phys. Rev. B ´ 68, 235310 (2003)], this splitting is proven to exhibit a characteristic two-fold symmetry with the in-plane orientation, and to increase with increasing modulus of the excitation momentum. This opens the way to a more complete investigation, aiming at evidencing the existence of a collective spin-orbit field driving these excitations.Fil: Baboux, F.. Universite de Paris Vi. Institut Des Nanosciences de Paris; Francia. Centre National de la Recherche Scientifique; FranciaFil: Perez, F. Universite de Paris Vi. Institut Des Nanosciences de Paris; Francia. Centre National de la Recherche Scientifique; FranciaFil: Ullrich, C. A. . University Of Missouri; Estados UnidosFil: D'Amico, I. . University Of York; Reino UnidoFil: Gomez, Javier Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Centre National de la Recherche Scientifique; Francia. Universite de Paris Vi. Institut Des Nanosciences de Paris; FranciaFil: Bernard, M.. Universite de Paris Vi. Institut Des Nanosciences de Paris; Franci

    Unstable and stable regimes of polariton condensation

    Full text link
    Modulational instabilities play a key role in a wide range of nonlinear optical phenomena, leading e.g. to the formation of spatial and temporal solitons, rogue waves and chaotic dynamics. Here we experimentally demonstrate the existence of a modulational instability in condensates of cavity polaritons, arising from the strong coupling of cavity photons with quantum well excitons. For this purpose we investigate the spatiotemporal coherence properties of polariton condensates in GaAs-based microcavities under continuous-wave pumping. The chaotic behavior of the instability results in a strongly reduced spatial and temporal coherence and a significantly inhomogeneous density. Additionally we show how the instability can be tamed by introducing a periodic potential so that condensation occurs into negative mass states, leading to largely improved coherence and homogeneity. These results pave the way to the exploration of long-range order in dissipative quantum fluids of light within a controlled platform.Comment: 7 pages, 5 figure

    Spin-Orbit Twisted Spin Waves : Group Velocity Control

    Get PDF
    We present a theoretical and experimental study of the interplay between spin-orbit coupling (SOC), Coulomb interaction, and motion of conduction electrons in a magnetized two-dimensional electron gas. Via a transformation of the many-body Hamiltonian we introduce the concept of spin-orbit twisted spin waves, whose energy dispersions and damping rates are obtained by a simple wave-vector shift of the spin waves without SOC. These theoretical predictions are validated by Raman scattering measurements. With optical gating of the density, we vary the strength of the SOC to alter the group velocity of the spin wave. The findings presented here differ from that of spin systems subject to the Dzyaloshinskii-Moriya interaction. Our results pave the way for novel applications in spin-wave routing devices and for the realization of lenses for spin waves
    • …
    corecore